Jacobians

N. J. J.

1. If $u = \frac{yz}{x}$, $v = \frac{xz}{y}$, $w = \frac{xy}{4}$ find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$. 2. If u = x + 2y + z, v = x + 2y + 3z, w = 2x + 3y + 5z find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$. 3. If u = x + y + z, v = xy + yz + xz, w = xyz find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$. 4. If u = x + y + z, $v = x^2 + y^2 + z^2$, w = xyz find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$. 5. If u = (1 - x), v = x(1 - y), w = xy(1 - z) find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$. 6. If x = uv, $y = \frac{u + v}{u - v}$, find $\frac{\partial(u, v)}{\partial(x, v)}$. 7. If $u = r \sin\theta \cos\varphi$, $v = r \sin\theta \sin\varphi$, $w = r \cos\theta$ find $\frac{\partial(u,v,w)}{\partial(r,\theta,\varphi)}$. 8. If $x = u, y = u \tan v, z = w$ show that J, J' = 1. 9. If $x = \sqrt{vw}$, $y = \sqrt{uw}$, $z = \sqrt{uv}$ find $\frac{\partial(x,y,z)}{\partial(u,v,w)}$. 10. If $x = e^v \sec u$, $y = e^v \tan u$ then evaluate $\frac{\partial(x,y)}{\partial(u,v)}$. 11. If u = 2axy, $v = a(x^2 - y^2)$ where $x = r \cos \theta$, $y = r \sin \theta$, then prove that $\frac{\partial(u,v)}{\partial(r,\theta)} = -4a^2r^3$. 12. If $x = \sqrt{vw}$, $y = \sqrt{uw}$, $z = \sqrt{uv}$ and $u = r \sin\theta \cos\varphi$, $v = r \sin\theta \sin\varphi$, $w = r \cos\theta$ find $\frac{\partial(x,y,z)}{\partial(r,\theta,\varphi)}$. 13. If $u_1 = x_1 + x_2 + x_3 u_1^2 u_2 = x_2 + x_3$ and $u_1^3 u_3 = x_3$, then find $\frac{\partial(u_1, u_2, u_3)}{\partial(x_1, x_2, x_3)}$. 14. If $u^3 + v^3 + w^3 = x + y + z$, $u^2 + v^2 + w^2 = x^3 + y^3 + z^3$ and $u + v + w = x^2 + y^2 + z^2$, then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$. 15. If u, v, w are the roots of the equation $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$, in λ find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$. 16. If $u^3 + v^3 = x + y$, $u^2 + v^2 = x^3 + y^3$ find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$. 17. If u = x + y + z, uv = y + z, uvw = z find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$. 18. If u = x + y + z, v = xy + yz + xz, $w = x^2 + y^2 + z^2$ show that u, v, w are not independent and find relation. 19. Show that $u = \sin^{-1}x + \sin^{-1}y$ and $v = x\sqrt{(1-y^2)} + y\sqrt{(1-x^2)}$ are functionally dependent & find relation. 20. If u = x + y - z, v = x - y + z, $w = x^2 + y^2 + z^2 - 2yz$ show that u, v, w are not independent and find relation. 21. Show that $u = \tan^{-1} x + \tan^{-1} y$, $v = \frac{x+y}{1-xy}$ are functionally dependent & find relation. 22. If u = 3x + 2y - z, v = x - 2y + z, w = x(x + 2y - z) show that u, v, w are not independent and find relation. 23. u = x + 2y + z, v = x - 2y + 3z, $w = 2xy - xz + 4yz - 2z^2$ show that u, v, w are not independent and find relation. 24. If $u = \frac{x + y}{z}$, $v = \frac{y + z}{z}$, $w = \frac{y(x + y + z)}{z}$, then show that u, v, w are not independent and find the relation. 25. If u = x + y + z, $v = x^2 + y^2 + z^2$, $w = x^3 + y^3 + z^3 - 3xyz$ show that u, v, w are not independent and find the relation. 26. Find functional dependence and relation (i) $u = \frac{x+y}{x-y}$, $v = \frac{xy}{(x-y)^2}$ (ii) $u = \frac{x-y}{x+y}$, $v = \frac{x+y}{x}$ (iii) $u = \frac{x-y}{x+y}$, $v = \frac{xy}{(x+y)^2}$.

Taylor's Series

- 1. Obtain the expansion of $e^x \cos y$ in the neighborhood of $(1, \pi/4)$ by Taylor's series
- 2. Expand x^{y} in powers of (x-1) and (y-1) up to third degree terms
- 3. Expand $f(x, y) = \tan^{-1}(y/x)$ in powers of (x 1) and (y 1) up to and including the second degree terms. Hence compute f(1.1, 0.9).
- 4. Expand $\frac{(x+h)(y+k)}{x+h+y+k}$ in powers of h and k up to second degree terms.
- 5. Obtain the expansion of $e^x \log(1+y)$ about (0,0)
- 6. Obtain the expansion of e^x siny in the neighborhood of $(1, \pi/4)$
- 7. Expand sin(xy) in the neighborhood of $(1, \pi/2)$.
- 8. Expand $x^2 y + 3y-2$ in the powers of (x-1) and (y+2).
- 9. Expand $x^2 + 3y^2 9x 9y + 26$ in the powers of (x-1) and (y-2).
- 10. Expand $(1 + x + y^2)^{1/2}$ at the point (1, 0).